OLSEN RANCHES, INC.

ANNUAL BULL SALE

Saturday, January 27, 2024
12:00 (Noon) MST
at the Ranch

Female-Focused, Feeder Friendly, and Consumer Centered

> 2322 Road 14
> Harrisburg, NE 69345
> 308-641-1273 (Douglas cell)
> 308-631-3104 (Art cell)
> www.olsenranches.com

Olsen Ranches, Inc.
 Annual Bull Sale

January 27, 2024
Sale - 12:00 noon
Lunch Available
Harrisburg, Nebraska
What a ride the last couple of years have been in the cattle industry! On the plains, the drought of 2022, the winter of 22-23, and the rain of May and June of 2023 were certainly noteworthy times. The fed cattle market and, subsequently, the feeder calf market have provided some excitement. Although feed costs have decreased, they will always be an important consideration for profitability on the ranch and in the feedlots. High quality feeders will command a greater value. Plenty of replacement females will be kept over the next few years. It is important to select bulls for your cows that can sire calves with improved feed efficiencies, high gain and quality potential, and maternal abilities.

We praise God for the ability to live on this land, raise our families, and produce food for His creation. We also are privileged to collect research data for the American Hereford Association and its membership as the primary test herd for the AHA National Reference Sire Program and use this proven data to select for performance, carcass merit, feed efficiency, and maternal characteristics such as longevity. In other words, we use what we learn in our own herd to offer relevant and sustainable genetics to other people involved in the beef industry.
This operation has a long history of helping our customers produce healthy, safe, nutritious, and desirable food for the consumers in this country and abroad, and our goals have remained consistent - to be
female-focused, feeder friendly, and consumer centered. While the primary development of this year's sale bulls started 2.5 years ago as we bred their dams, they are actually the product of our work over the last 24 years as an AHA NRSP test herd, 13 years collecting and analyzing feed intake data, 30 years of tracking all offspring carcass data, and 138 years of Olsens raising Hereford commercial cows and 38 years of raising registered Hereford cattle in western Nebraska. Our commitment to the collection of scientific data and related research has positively shaped our genetics and the reliable and consumer-friendly end product we produce and will have a proven and positive impact on your own operation.
We recognize the critical importance of heterosis and breed complementarity in making commercial cow herds profitable, and we take pride in providing our customers with the genetics to get this critical job done right. The genetics we produce fit our high plains resources, yielding cattle who grow efficiently and are low maintenance from calving to harvest. Our cows have been challenged over the years and, as a result, we have a cow herd that has adapted favorably to the environmental challenges we face. Our commercial and registered cows graze 12 months of the year, calving in late May through June on grass
and moving to cornstalks through the fall and winter. We finish all the offspring not sold or used as breeding stock on the ranch. We have been collecting feed intake data through our own ranch research feed efficiency testing facility since 2010 on all calves out of our registered cows and all AI-sired steers out of the commercial cows and have the data to prove the value-add for these bulls in your operation. Starting in 2022, the ranch initiated a new research project with Colorado State University and AHA studying sustainability with measurements of methane and carbon dioxide emissions and other related measurements. In 2023, the ranch installed tanks with flowmeters and in pen weighing devices to begin measuring individual water intake for cattle in conjunction with feed intake and others in a bigger pen setting.

We are located 25 miles south of Scottsbluff or 17 miles north of Kimball on Highway 71, and 10 miles west on Banner County Road 14. You will find us very open and honest about our cattle. Feel free to call and make arrangements anytime to view our cow herd or our bulls.

We encourage you to take a look at the data, videos, and information available at www.olsenranches.com. Please feel free to ask any questions you may have. If you cannot attend the sale on the $27^{\text {th }}$, please contact us and we will accommodate you. If you have ball games to attend, we will have buyer representatives available. Come take a look and we will be available to help you.

We appreciate the opportunity to hear about your goals and to help you select the best genetics for your operation. These bulls have the potential to be valuable tools for many operations, including yours!

Art and Douglas Olsen
(308) 641-1273 (Douglas)
(308) 631-3104 (Art)

Sale Procedures and Terms

EPDs in this catalog were released by AHA on January 15, 2024. The most up to date EPDs can be found on the American Hereford Association website. All EPDs are genetically enhanced. Intake data is not reflected in the EPDs in our catalog.

You will be able to view videos of the bulls on our website: www.olsenranches.com. We also will have "The Livestock Link" broadcast our sale, and you will be able to bid over the internet. On site and on the web, bulls will sell in catalog order with base prices set for each bull prior to the sale. During the sale, we will bid the bulls up from the base price in the case of multiple interested purchasers.

If you bring your own trailer, you will receive a $\$ 50 /$ head rebate on each animal you haul home on sale day. We will perform any tests necessary for out of state deliveries after the sale. If you have special health requirements in your state or area, please alert us on sale day. We will provide delivery services to you - for all deliveries 200 to 400 miles from the ranch, we will charge $\$ 150 /$ head delivered; for deliveries 400 to 500 miles from the ranch, we will charge $\$ 200 /$ head delivered; for deliveries over 500 miles from the ranch, we will come to agreement with the purchaser on delivery costs. We will begin deliveries immediately after the sale. If you prefer not to take delivery as scheduled, we will care for your bull purchases at our risk for $\$ 3.00 /$ hd/day. This cost will begin March 1.

All the bulls have a complete Breeding Soundness Evaluation. Olsen Ranches, Inc. will sell 100% possession and will retain a 25% semen revenue sharing interest in all bulls, unless otherwise announced during the sale.

Olsen Ranches, Inc.
Annual Bull Sale
January 27, 2024
Sale - 12:00 noon
Lunch Available
Harrisburg, Nebraska

PERFORMANCE INFORMATION

Quality performance information is extremely important to our operation. The EPD terms are defined on the following page. The table with the breed average EPDs and the average of our sale bulls shows some of the selection pressure that we have achieved with our program. Our pressure on calving ease, moderate growth, lower feed intake, average milk, smaller cow size, better udders, and especially carcass traits are evident in the following table.

Avg. EPDs for 2022 Born Calves																				
	CED	BW	ww	rw	Dmi		SCF		M8c	Cem	Mcw	Udd	Teat			FT	REA	MAR	BMI	HB
Olsen Sale Bull	7.0	0.8	54	84	0.1	1.2	21.7	29	55	4.1	68	1.4	1.4	69		. 04	0.59	0.60	461	164
Breed Avg. EPD	3.3	2.7	55	89	0.2	1.0	16.6	26	54	1.9	88	1.3	1.3	70		. 02	0.43	0.13	56	117

Because of data collected on animals in a pedigree, EPDs are superior to an animal's actual measurements in predicting an animal's genetic potential. For more information about the American Hereford Association's performance measurements, check www.hereford.org. Performance pedigrees of the animals can also be found on AHA's website through an "EPD Search" using the guest option and using the animal's name or registration number to look up any animal.

Weight and Feed Efficiency Terms

Feed Efficiency Trial March 18 - May 16, 2023
ADG The average daily gain of the individual during the 70-day feed efficiency test
5/16 WT The actual weight at the end of the feed efficiency test
Scrotal Actual scrotal measurement 1/10/24
F/G The feed to gain ratio during the 70-day feed efficiency test - note that a lower ratio is more feed efficient

ADJ F/G The feed to gain ratio during the 70-day test that is adjusted for an animal's body weight
RFI The Residual Feed Intake is the difference between an animal's actual feed intake and its expected feed intake based on its size and growth over a specified period. An animal with a lower RFI value is more feed efficient.

RG The Residual Gain is the difference between an animal's actual gain and its expected gain based on intake and body weight. An animal with a higher value is more efficient.

FE Index Feed Efficiency Index is an index that combines the value of gain and the cost of intake. Higher is more desirable.

Understanding Hereford EPDs

The American Hereford Association (AHA) currently produces expected progeny differences (EPDs) for 17 traits and calculates three profit indexes. AHA's genetic evaluation makes use of a Marker Effects Model that allows the calculation of EPDs by incorporating the pedigree, phenotypic and genomic profile of an animal. Animals that have a genomic profile will be denoted with a GE-EPD logo. The current suite of Hereford EPDs and profit indexes includes:
Calving Ease - Direct (CE) CE EPD is based on calving ease scores and birth weights and is measured on a percentage. CE EPD indicates the influence of the sire on calving ease in females calving at 2 years of age. For example, if sire A has a CE EPD of 6 and sire B has a CE EPD of -2, then you would expect on average, if comparably mated, sire A's calves would have an 8 percent more likely chance of unassisted calving when compared to sire B's calves.
Birth Weight (BW) BW EPD is an indicator trait for calving ease and is measured in pounds. For example, if sire A has a BW EPD of 3.6 and sire B has a BW EPD of 0.6 , then you would expect on average, if comparably mated, sire A's calves would come 3 lb . heavier at birth when compared to sire B's calves. Larger BW EPDs usually, but not always, indicate more calving difficulty. The figure in parentheses found after each EPD is an accuracy value or reliability of the EPD.
Weaning Weight (WW) WW EPD is an estimate of pre-weaning growth that is measured in pounds. For example, if sire A has a WW EPD of 60 and sire B has a WW EPD of 40, then you would expect on average if comparably mated, sire A's calves would weigh 20 lb . heavier at weaning when compared to sire B's calves.
Yearling Weight (YW) YW EPD is an estimate of post-weaning growth that is measured in pounds. For example, if sire A has a YW EPD of 100 and sire B has a YW EPD of 70, then you would expect on average if comparably mated, sire A's calves would weigh 30 lb . heavier at a year of age when compared to sire B's calves.
Dry Matter Intake (DMI) The DMI EPD predicts the daily consumption of pounds of feed. For example, if sire A has a DMI EPD of 1.1 and sire B has a DMI EPD of 0.1 , you would expect sire B's progeny, if comparably mated, to consume on average 1 pound of feed less per day.
Scrotal Circumference (SC) Measured in centimeters and adjusted to 365 days of age, SC EPD is the best estimate of fertility. It is related to the bull's own semen quantity and quality, and is also associated with age at puberty of sons and daughters. Larger SC EPDs suggest younger age at puberty. Yearling sons of a sire with a 0.7 SC EPD should have yearling scrotal circumference measurements that average 0.7 centimeters (cm) larger than progeny by a bull with an EPD of 0.0 cm.

Sustained Cow Fertility The AHA's new SCF EPD is a prediction of a cow's ability to continue to calve from three years of age through 12 years of age, given she calved as a two-year-old. The EPD is expressed as a deviation in the proportion of the 10 possible calvings to 12 years old expressed as a probability. For example, the daughters of a bull with a 30 EPD would have the genetic potential to have one more calf by age 12 than the daughters from a bull with a 20 EPD . In other words, the daughters from the 30 EPD bull would have a 10% greater probability of having one more calf than the bull with a 20 EPD. This is equivalent to saying that the daughters are 10% more likely to remain in the herd to age 12 .
Maternal Milk (MM) The MM EPD of a sire's daughters is expressed in pounds of calf weaned. It predicts the difference in average weaning weights of sires' daughters' progeny due to milking ability. Daughters of the sire with a +14 MM EPD should produce progeny with 205 -day weights averaging 24 lb . more (as a result of greater milk production) than daughters of a bull with a MM EPD of -10 lb . (14 minus $-10.0=24 \mathrm{lb}$.). This difference in weaning weight is due to total milk production during the entire lactation.
Maternal Milk \& Growth (M\&G) The M\&G EPD reflects what the sire is expected to transmit to his daughters for a combination of growth genetics through weaning and genetics for milking ability. It is an estimate of the daughter's progeny weaning weight. A bull with a 29 lb . M\&G EPD should sire daughters with progeny weaning weights averaging 19 lb . heavier than progeny of a bull's daughters with a M\&G EPD of 10 lb . (29 minus $10=19 \mathrm{lb}$.). It is equal to one-half the sire's weaning weight EPD, plus all of his MM EPD. No accuracy is associated with this since it is simply a mathematical combination of two other EPDs. It is sometimes referred to as "total maternal" or "combined maternal."
Maternal Calving Ease (MCE) MCE EPD predicts how easily a sire's daughters will calve at two years of age and is measured on a percentage. For example, if sire A has a MCE EPD of 7 and sire B has a CE EPD of -3 , then you would expect on average if comparably mated, sire A's daughters would calve with a 10% more likely chance of being unassisted when compared to sire B's daughters.
Mature Cow Weight (MCW) The MCW EPD was designed to help breeders select sires that will either increase or decrease mature size of cows in the herd. The trait was developed after years of cow weight data collection and the EPD relates directly to the maintenance requirements of a cow herd. For example, if sire A has a MCW EPD of 100 and sire B has an EPD of 85, then you would expect the females of sire A, if comparably mated, to be 15 lb . heavier at mature size.

Udder suspension (UDDR) UDDR EPDs are reported on a 9 (very tight) to 1 (very pendulous) scoring scale. Differences in sire EPDs predict the difference expected in the sires' daughters' udder characteristics when managed in the same environment. For example, if sire A has a UDDR EPD of 0.4 , and sire B has a UDDR EPD of -0.1 , the difference in the values is 0.5 , or one-half of a score. If daughters of sires A and B are raised and managed in the same environment, you would expect half a score better udder suspension in daughters of sire A, compared to sire B.
Teat size (TEAT) TEAT EPDs are reported on a 9 (very small) to 1 (very large, balloon shaped) scoring scale. Differences in sire EPDs predict the difference expected in the sires' daughters' udder characteristics when managed in the same environment. For example, if sire A has a teat size EPD of 0.4 , and sire B has a teat size EPD of -0.1 , the difference in the values is 0.5 , or onehalf of a score. If daughters of sires A and B are raised and managed in the same environment, you would expect half a score smaller teat size in daughters of sire A, compared to sire B.
Carcass Weight (CW) CW EPD is a beneficial trait when considering the impact that pounds have relative to end product value. At the same age constant endpoint, sires with higher values for carcass weight will add more pounds of hot carcass weight compared to sires with lower values for carcass weight. For example, if sire A has a CW EPD of 84 and sire B has a CW EPD 64, then you would expect the progeny of sire A, if harvested at the same age constant endpoint, to have a 20lb . advantage in terms of hot carcass weight.
Rib Fat (FAT) The FAT EPD reflects differences in adjusted 365-day, 12th-rib fat thickness based on carcass measurements of harvested cattle. Sires with low, or negative FAT EPDs, are expected to produce leaner progeny than sires with higher EPDs. Ultrasound measures are also incorporated into this trait and have been shown to be highly correlated with the performance of slaughter progeny. All data is expressed on a carcass scale.
Ribeye Area (REA) REA EPDs reflect differences in an adjusted 365-day ribeye area measurement based on carcass measurements of harvested cattle. Sires with relatively higher REA EPDs are expected to produce better- muscled and higher percentage yielding slaughter progeny than will sires with lower REA EPDs. Ultrasound measurements are also incorporated into this trait and have been shown to be highly correlated with the performance of slaughter progeny. All data is expressed on a carcass scale.
Marbling (MARB) MARB EPDs reflect differences in an adjusted 365-day marbling score (intramuscular fat, [IMF]) based on carcass measurements of harvested cattle. Breeding cattle with higher MARB EPDs should produce slaughter progeny with a higher degree of IMF and therefore higher quality grades. Ultrasound measurements are also incorporated into this trait and have been shown to be highly correlated with the performance of slaughter progeny. All data is expressed on a carcass scale.

Baldy Maternal Index (BMI\$) The BMI\$ is a maternally focused index that is based on a production system that uses Hereford x Angus cross cows. Progeny of these cows are directed towards Certified Hereford Beef. This index has significant weight on Sustained Cow Fertility, which predicts fertility and longevity of females. There is a slightly positive weight on Weaning Weight, Mature Cow Weight and Milk which accounts for enough growth but ensures females do not increase inputs. There is some negative emphasis on Dry Matter Intake, but a positive weighting on Carcass Weight which is anticipated to provide profitability from finishing of nonreplacement females and castrated males. Marbling and Rib-eye Area are also positively weighted to keep the harvested progeny successful for CHB. This index is geared to identify Hereford bulls that will be profitable when used in a rotational cross with mature commercial Angus cows.

Brahman Influence Index (BII\$) The BII\$ is a maternally focused index that is based on a production system that uses Brahman x Hereford cross cows. This index targets producers that use Hereford bulls on Brahman influenced cows.

Certified Hereford Beef Index (CHB\$) CHB\$ is a terminal sire index that is built on a production system where Hereford bulls are mated to mature commercial Angus cows and all progeny will be targeted for Certified Hereford Beef® after the finishing phase. This index has significant weight on Carcass Weight to ensure profit on the rail. As well there is a positive weighting for Average Daily Gain along with a negative weighting on Dry Matter Intake to ensure efficient pounds of growth in the finishing phase. Keep in mind, this production system takes advantage of complimentary breeding with the commercial Angus cow. Although Marbling is weighted positively in this index, a positive weighting for Rib-eye Area and a negative weighting for Back Fat are a greater priority in this index to allow for optimum end-product merit. This is the only index that has no emphasis on fertility. Remember that no replacement heifers are being retained.

We name the Zane (sire) offspring "Generator" for the females that Zane generates. When $261 Z$ was born, I told myself that B036 (dam) may be the prettiest, perfect uddered heifer that we have calved. Here is a package that combines 2 great female producers along with calving ease (top 2\%), moderate mature cow weight, top 2% Udd, top 3% teat, and top 1% marbling and 1% CHB.

5/29/2022

Ratio

BW	110%
WW	102%
YW	112%
Scrotal	39.0

SHF MAGGIE Y90 B66 (B66) P43477571
LOEWEN C\&L 33N APOLLO A42 ET (A42) P43373567
Dam OR A42 MISS DIXIE $716 Z$ (716) P43968122
OR U332 MISS BEEF EATER 211T (211) P43373874
5/16/2023 WT 1075

5/16/2023 WT 1075															BMI	CHB
															\$504	\$187
CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
5.2	2.1	64	107	0.3	1.5	23.3	31	63	3.8	88	1.40	1.50	87	0.04	0.70	0.57

WOW! It is easy to find this bull in a large pen of bulls. Not only did this bull outgain the next best gaining bull on test by .75 lb but he had the best adjusted F / G ratio, best RG , and the second-best Efficiency Index. His 11 -year-old grandam (Tank) weaned a calf in 2023. Notice his complete EPD profile, including top 4% SCF, 9% REA, 1% Marb, and 1% on all indexes. This is certainly a tool in the toolbox to make steers that will perform for you, the feeder, and the packer along with leaving some impressive heifers in the herd. DNA pending on polled and defects.

273FOR F158 FORESIGHT 273F

44517022 Polled 5/27/2022
EFBEEF BR VALIDATED B413 (PEFB413) P43558667
Sire SHF FORESIGHT B413 F158 (F158) P43894968
SHF GERBER R117 Y200 (Y200) P43181086
CSU RAM DOMINATOR 4203 (4203) 42531422
Dam OR RAM DOMET H310 (310) 43472997
OR L008 MISS HARLAND $103 Z$ (103) 43274124
5/16/2023 WT 836

CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
7.2	0.6	43	66	-0.2	0.8	23.3	24	45	1.9	67	1.40	1.40	68	0.03	0.55	0.51

274FOR F158 FORESIGHT 274F
44517023 Polled 5/27/2022
Ratio
BW 106\%
EFBEEF BR VALIDATED B413 (PEFB413) P43558667 WW 106\%
Sire SHF FORESIGHT B413 F158 (F158) P43894968 YW 106\%
SHF GERBER R117 Y200 (Y200) P43181086 Scrotal 35.5
CSU RAM DOMINATOR 4203 (4203) 42531422 Feed Efficiency
Dam OR RAM DOMET H326 (326) 43473005
ADG 3.83
OR 3575 MISS ADV N913 (916) 43068258
RFI -2.12
FE Index \$13.98

5/16/2023 WT 1021															BMI	CHB
															\$373	\$142
CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
3.1	2.4	57	89	0.2	1.0	16.5	20	49	-3.4	99	1.40	1.30	65	0.01	0.63	0.42

295 OR 657L Domino 295
44514289 Horned 7/1/2022
Ratio
LJS MARK DOMINO 0945 (0945) 43000470
Sire OR 0945 DOMINO 657L (657) 43860459
OR 3027 MISS DOMINO 318R (318) 43472973
OR 3575 ADVANCE N359 (359) 43473003
Dam OR N359 MARYANN J725 ET (725) 43968227
OR MISS PROFICIENT 002 Z (002) P43173347

$$
\begin{array}{c|c|}
\hline 0.63 & \$ 25.59 \\
\hline 0.10 & \$ 8.04
\end{array}
$$

$$
\begin{array}{|c|c|}
\hline \stackrel{\wedge}{\dot{\sigma}} & \infty \\
\dot{0} & 0 \\
\vec{\theta} & \dot{0} \\
\dot{\theta} \\
\hline
\end{array}
$$Index

（308）631－3104

$$
\text { 16-May } 70 \text { Day Intake ADJ }
$$

$$
\begin{array}{|l|l|l|l|}
\hline 994 & 3.53 & 22.3 & 5.75 \\
\hline
\end{array}
$$

$\begin{array}{\|l\|} \hline \infty \\ \downarrow \\ \forall \end{array}$	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	

	$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$	$\stackrel{\rightharpoonup}{2}$	$\stackrel{0}{6}$	$\stackrel{N}{\hat{\infty}}$	$\stackrel{0}{\infty}$	$\vec{\forall} \mid$	$\vec{\theta}$	$\stackrel{7}{4}$
	$\dot{\neq} \mid$	θ	$\overrightarrow{\neq}$	$\stackrel{o}{\dot{+}} \underset{\dot{\mid}}{ }$	眏	$\left\|\begin{array}{c} \dot{\sim} \end{array}\right\|$		\sim
	0	0	0	${ }^{\infty} \dot{0}$	\circ	\bigcirc	\bigcirc	\％
	$\stackrel{0}{0}$	$\hat{0}$	${ }^{\infty} \dot{0}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\stackrel{+}{\circ}$	\bigcirc	$\dot{\circ}$	．
	0	0	$0 .$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	0	0	0
	\％	∞	∞	$\stackrel{\infty}{\circ}$	¢	\bigcirc	\bigcirc	\bigcirc
		-		$-i$		$\stackrel{-}{1}$	－	\cdots
		$\stackrel{+}{-}$	$\xrightarrow[-]{-}$	$\stackrel{\square}{\square}$	$\stackrel{-}{\square}$	$\underset{i}{-}$		

$\left\|\begin{array}{l} \infty \\ \stackrel{1}{*} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \hat{0} \\ & \vec{\forall} \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\vec{v}} \underset{\vec{*}}{ }$			∞ \cdots \cdots \cdots
$$	$\begin{array}{\|l\|l\|} \hline \stackrel{\ominus}{*} \\ \underset{甘}{2} \end{array}$	$\begin{array}{\|l\|l\|} \hline 0 \\ \text { io } \\ \forall \end{array}$			N \sim \sim
$\begin{array}{\|l\|} \hline \begin{array}{l} 0 \\ 0 \\ 0 \end{array} \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$	$$	
$\begin{aligned} & 9 \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\underset{\sim}{\circ}}{\dot{\circ}}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\square}{\circ}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\left.\begin{aligned} & -0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\stackrel{\square}{\circ}$
\square	\bigcirc	¢	$\stackrel{\sim}{\wedge}$	$\stackrel{\infty}{\circ}$	\bigcirc
$\begin{aligned} & 0 \\ & - \end{aligned}$	$\stackrel{n}{\square}$	$\stackrel{\text { n }}{\sim}$			$\stackrel{\square}{\square}$
1	$\stackrel{\rightharpoonup}{i}$	$\left\lvert\, \begin{gathered} \underset{i}{\prime} \end{gathered}\right.$			＋

$\frac{0}{7}$

茳	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \dot{t} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	O
苟	ก	앙	¢	－	$\stackrel{\infty}{\circ}$	¢	$\stackrel{\infty}{0}$	ᄂ	$\stackrel{\square}{6}$	ㅇ
苂	$\left\|\begin{array}{c} n \\ - \end{array}\right\|$	$\stackrel{?}{\square}$	$\stackrel{\bullet}{7}$	$\stackrel{m}{\sim}$	0	$\stackrel{n}{\square}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{n}{\sim}$	$\stackrel{m}{-}$	＋
	＋	ִ?	$\underset{i}{+}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{-}$	$\stackrel{0}{1}$	$\stackrel{+}{-} \mid$	$\underset{i}{+}$	$\stackrel{\rightharpoonup}{*}$	

美
12：00 PM
tZOZ＇LZ Kıenuer＇Kepınıes

G291	028A	9.0	-0.1	51	81	0.2	0.6	18.2	32	57	8.6	50	1.2	1.4	53	0.00	0.14	0.64	\$384	\$145	813	3.30	21.5	7.01	0.39	-0.06	-\$1.11
G292	013E	11.0	-0.2	61	90	0.1	0.7	22.0	39	70	5.1	52	1.4	1.5	83	0.07	0.66	0.88	\$497	\$207	715	3.14	19.3	7.33	-0.07	0.00	\$4.60
G277	521 K	6.6	-1.3	51	80	0.1	1.1	23.2	33	58	3.1	67	1.3	1.4	67	0.04	0.49	0.72	\$486	\$172	918	3.73	22.1	5.75	-1.44	0.32	\$13.12
B294	309B	6.9	-0.3	49	83	0.2	1.3	21.8	29	54	3.2	59	1.3	1.3	54	0.07	0.24	0.64	\$436	\$143	833	3.60	20.7	6.11	-1.17	0.33	\$14.29
K281	F621	7.2	0.5	51	79	-0.1	1.0	22.8	31	57	2.4	93	1.3	1.4	71	0.03	0.55	0.54	\$484	\$166	913	3.26	22.0	6.55	-0.63	-0.14	-\$1.39
D268	T805	-2.0	4.8	70	111	0.3	1.2	16.6	29	64	0.8	97	1.2	1.1	90	0.03	1.01	0.40	\$409	\$175	1072	4.15	27.8	5.79	1.46	0.16	-\$5.85
D2101	T746	0.0	2.4	63	98	0.1	1.3	20.3	31	63	-0.4	80	1.3	1.4	70	0.04	0.64	0.47	\$440	\$155	1023	3.95	24.1	5.48	-1.20	0.34	\$10.24
2100E	T739	-3.3	4.9	71	107	0.2	1.2	21.0	27	63	-2.9	103	1.2	1.3	93	0.04	0.90	0.50	\$481	\$186	1002	3.68	25.4	6.24	0.78	-0.07	-\$7.32
275 E	L522	4.7	1.9	57	81	-0.1	1.2	20.9	24	52	1.3	88	1.4	1.5	67	0.09	0.38	0.54	\$442	\$149	833	3.55	20.7	6.18	-1.11	0.27	\$12.63
257E	517B	9.2	-0.7	47	74	0.3	1.4	20.0	22	46	1.4	46	1.1	1.2	74	0.10	0.27	0.78	\$427	\$173	966	3.06	25.0	7.48	1.79	-0.65	-\$25.19
C289	F514	4.1	0.8	63	97	0.0	1.4	28.4	31	62	2.5	50	1.6	1.7	73	0.10	0.72	0.50	\$560	\$160	937	3.20	24.1	7.12	1.17	-0.41	-\$15.99
C272	F622	1.5	1.6	57	77	0.0	0.6	21.8	15	43	0.3	53	1.6	1.7	61	0.02	0.63	0.50	\$449	\$143	990	3.42	23.1	6.16	-0.87	-0.09	-\$1.02
Olsen Sale Bull		7.1	0.7	53	84	0.1	1.2	21.5	29	55	4.2	67	1.4	1.4	68	0.04	0.57	0.60	\$456	\$162	934	3.58	23.2	6.28	-0.26	0.06	\$1.69
Breed Avg. EPD		3.3	2.7	55	89	0.2	1.0	16.6	26	54	1.9	88	1.3	1.3	70	0.02	0.43	0.13	\$356	\$117							

FE Index | An Index to combine |
| :--- |
| value of gain and cost of | value of gain and cost of

intake based on intake and body weight.

Higher is more desirable.

The difference between an animal's he predicted gain based on intake and body weight.

Higher is more desirable.

O
The difference between
an animal's actual feed
intake and the predicted
intake based on the size
and growth during the
test.
Lower is more desirable.

> ADJ F/G $\begin{aligned} & \text { Pounds of feed required for one pound of } \\ & \text { live weight gain adjusted for an animal's } \\ & \text { body weight. }\end{aligned}$ Lower is more desirable.

Ratio
BW 108\%
WW 113\%
YW 105\%
Scrotal 35.5

Feed Efficiency
ADG 3.53
RFI
-1.94
FE Index $\$ 8.04$

	BMI
	\$514
CHB	
	REA
	MARB
6	0.79

N255OR 3575 ADVANCE N255
44515189
Scurred
5/20/2022

Ratio
HH ADVANCE 1045L (1045) 42151369
Sire DS 1045 ADVANCE 3575N (3575) 42394633
DS 6805 MS TROY 8605 (8605) 41046851

SCHU-LAR CONVERSION 501 ET (501) P43624399
Dam OR 501 MISS COMPETITOR C901 (901) P44195213
OR 3027 MISS DOMINO 115R (115) 43266037
Feed Efficiency
ADG $\quad 3.22$
RFI $\quad-0.47$
FE Index $-\$ 2.24$

5/16/2023 WT			896												BMI	CHB		
													\$167					
CED	BW	WW			YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
2.9	2.8	58	87	0.2	1.8	21.9	29	58	1.7	93	1.40	1.50	68	0.07	0.69	0.70		

MDP DBP
5/18/2022

Ratio

BW	88%
WW	102%
YW	101%
Scrotal	40.0

Feed Efficiency
ADG $\quad 3.79$
RFI -2.83
FE Index $\$ 19.69$

CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
9.7	-1.0	45	76	-0.1	1.2	21.5	34	57	8.3	30	1.40	1.50	63	-0.01	0.45	0.54

Ratio
5L DEFENDER 560-30Z15499331P
Sire SCHULER TOP HAND D91135530181POSF
SOR BRASKA ENDRANCE B62516970151P
EFBEEF X651 TESTED A250 (PEFA250) P43440096
Dam OR A250 MISS TESTED 018F (018) P44304688
OR N162 MISS HUSKER L816 (816) 44068620
BW 92\%
WW 120\%
YW 116\%
Scrotal $\quad 37.5$
Feed Efficiency
ADG 4.24
RFI -1.88

FE Index $\$ 19.47$

	BMI	CHB
T	REA	MARB
	0.47	0.63

296 OR 1/2 Red Angus 1/2 Hereford 296 44515199 Polled 5/29/2022

5L DEFENDER 560-30Z15499331P WW 113\%
Sire SCHULER DEFENDER 5607C34897871P
SOR KITTY REBEL 3902A16135271P
GENOAS BONANZA 11051 (11051) P43174342
Dam OR MISS BONANZA 409B (409) 43635831
OR MISS PROGRESS 113P (113) P43266038

$276 Z$ OR Z115 GENERATOR 2762

44513901 Scurred 5/29/2022 Ratio
KCF BENNETT REVOLUTION X51 (X51) P43081556
Sire SHF ZANE X51 Z115 (Z115) P43276663
SHF FOREVER P20 X172 (X172) P43078192
UPS DOMINO 3027 (3027) 42426386
Dam OR 3027 MISS DOMINO 205R (205) 43374249
DS 9059 MS BEEF 708 (708) 42877038

EFBEEF TFL U208 TESTED X651 ET (PEFX651) P43091736 Sire EFBEEF BR VALIDATED B413 (PEFB413) P43558667

EFBEEF 4R THYRA Y865 (PEFY865) P43187517
OR N162 HUSKER L574 (574) 43745946
Dam OR L574 GINGER B906 (906) P44195246
OR Z18 MISS FAMOUS 508F (508) P43749563
5/29/2022
Ratio
BW 101\%
WW 100\%
YW 104\%
Scrotal 39.0
Feed Efficiency
ADG $\quad 3.41$
RFI $\quad 6.81$
FE Index - $\$ 44.77$

G262 OR G095 IMPROVER G262
44515230 Polled

MDP
5/24/2022
Ratio
BW 94\%
EFBEEF BR VALIDATED B413 (PEFB413) P43558667
Sire SHF GOLDSMITH B413 G095 (G095) P44005220
SHF MAGGIE Y90 B66 (B66) P43477571
SHF ZANE X51 Z115 (Z115) P43276663
Dam OR Z115 MISS GENERATOR $032 Z$ (032) P44308117
OR 3575 MISS ADVANCE N726 (726) 43968118
WW 114\%
YW 106\%
Scrotal 36.0

5/16/2023 WT			927												BMI	CHB
															\$524	\$153
CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
12.3	-1.5	46	76	0.3	1.3	27.3	36	59	7.7	48	1.50	1.50	51	0.02	0.44	0.75

J252 OR B990 JULE J252
44514282 Scurred 5/15/2022

Ratio

BW	91%
WW	111%
YW	97%
Scrotal	33.

SCHU-LAR ASSET 36F (36F) P43910830
Dam OR 36F MISS ADVANTAGE 039A (039) P44308141
Feed Efficiency
ADG $\quad 3.06$
RFI $\quad 1.58$
FE Index -\$16.25

5/16/2023 WT			846												$\begin{array}{\|l\|} \hline \text { BMI } \\ \hline \$ 338 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CHB } \\ & \hline \$ 143 \end{aligned}$
CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
7.6	-0.5	46	75	0.1	1.2	14.5	26	50	2.5	57	1.20	1.30	62	0.01	0.58	0.45

G265 OR G095 IMPROVER G265

 44514243 PolledEFBEEF BR VALIDATED B413 (PEFB413) P43558667
Sire SHF GOLDSMITH B413 G095 (G095) P44005220
SHF MAGGIE Y90 B66 (B66) P43477571
KCF BENNETT ADDITION B262 ET (B262) P43500553
Dam OR B262 MISS ADDITION 611X (611) P43860136
OR 3575 MISS HUSKER N120 ET (120) 43268577

MDP
5/25/2022

			Ratio
		BW	96\%
		WW	96\%
		YW	99\%
		Scrotal	33.0
		Feed	fficiency
		ADG	3.76
		RFI	-0.96
		Index	\$7.72
		BMI	CHB
		\$527	\$168
CW	FT	REA	MARB
71	0.12	0.58	0.69

Ratio

BW	93%
WW	
YW	100%
Scrotal	33.0

SCHU-LAR ASSET 36F (36F) P43910830
Dam OR 36F MISS ADVANTAGE 028A (028) 44308115
OR N359 MARYANN J736 ET (736) 43968228
Feed Efficiency
ADG
3.30

RFI
0.39

FE Index - $\$ 1.11$ 5/16/2023 WT 813

G292 OR G095 IMPROVER G292 44515223 Polled

MDP
6/27/2022
Ratio
BW 97\%
WW
YW 95\%
Scrotal 33.0
Feed Efficiency
Dam OR E158 MISS RESOLVED 013E (013) P44308110
OR A250 MISS TESTED 619F (619) P43860067
ADG 3.14
RFI
-0.07

FE Index $\$ 4.60$
5/16/2023 WT 715

CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA
MARB															
11.0	-0.2	61	90	0.1	0.7	22.0	39	70	5.1	52	1.40	1.50	83	0.07	0.66

G277 OR G095 IMPROVER G277

44514100 Polled 5/29/2022
MDP

EFBEEF BR VALIDATED B413 (PEFB413) P43558667
Sire SHF GOLDSMITH B413 G095 (G095) P44005220
SHF MAGGIE Y90 B66 (B66) P43477571
SHF PROGRESS P20 (P20) P42481042
Dam OR MISS PROGRESS 521K (521) 43747048
OR 3575 MISS ADVANCE N320 (320) 43472953
5/16/2023 WT 918

Ratio
BW
WW
YW
Scrotal
33.0

Feed Efficiency
ADG
3.60

RFI
-1.17
FE Index $\$ 14.29$

BMI	CHB
$\$ 436$	$\$ 143$
REA	MARB
0.24	0.64

K281 OR N753 STRATEGIC K281
44514247 Horned 5/31/2022
Ratio
BW 102\%
DS 1045 ADVANCE 3575N (3575) 42394633
Sire OR 3575 ADVANCE N753 (753) 43968107
OR 3027 MISS DOMINO 006R (006) 43173323
OR N151 HUSKER S361 (361) 43472959
Dam OR S361 MISS HUSKER F621 (621) 43860115
OR RAM DOMET H405 (405) 43635832

5/16/2023		WT	913											FE Index		\$1.39	
														BMI	CHB		
														\$484	\$166		
CED	BW		WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
7.2	0.5		51	79	-0.1	1.0	22.8	31	57	2.4	93	1.30	1.40	71	0.03	0.55	0.54

D268OR C981 DALTON D268

44514332 Horned 5/25/2022
SCHU-LAR CONVERSION 501 ET (501) P43624399
Sire OR 501 COMPETITOR C981 (981) P44195349
OR N151 MISS HUSKER S402 (402) 43635806
OR 3575 HUSKER N464 ET (464) 43647548
Dam OR N464 MISS ADVANCE T805 (805) 44068491
OR U332 MISS BEEF EATER 306T (306) P43472964
5/16/2023 WT 1072

| CED | BW | WW | YW | DMI | SC | SCF | MK | M\&G | CEM | MCW | UDD | TEAT | CW | FT | REA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | MARB 1 M 175

Ratio
BW 108\%
WW 105\%
YW 105\%
Scrotal 34.0
Feed Efficiency
ADG 3.95
RFI -1.20
FE Index $\quad \$ 10.24$

	BMI	CHB
	$\$ 440$	$\$ 155$
	REA	MARB
	0.64	0.47

2100EOR E158 RESOLVE 2100E

275E OR E158 RESOLVE 275E 44517025 Scurred

5/27/2022
EFBEEF RESOLUTE CEO (PEFC609) P43591829
Sire EFBEEF C609 RESOLUTE E158 ET (PEFE158) P43847198
EFBEEF P606 MABEL R415 (PEFR415) P42635108
OR 3575 HUSKER N162 ET (162) 43268578
Dam OR N162 MISS HUSKER L522 (522) P43745919
OR MISS FOUNDATION 208F (208) P43373886

DBP

Ratio	
BW	106%
WW	79%
YW	86%
Scrotal	35.0

Feed Efficiency
ADG $\quad 3.55$
RFI
-1.11
FE Index \$12.63

BMI	CHB
$\$ 442$	$\$ 149$
REA	MARB
0.38	0.54

Ratio

BW	95%
WW	97%
YW	98%
Scrotal	34.0

GENOAS BONANZA 11051 (11051) P43174342
Dam OR MISS BONANZA 517B (517) 43747036
OR MISS PROGRESS 113P (113) P43266038
Feed Efficiency
ADG 3.06
RFI $\quad 1.79$

FE Index -\$25.19

	BMI	CHB
	$\$ 427$	$\$ 173$
	REA	MARB
0	0.27	0.78

C289OR 501 COMPETITOR C289

44514979 Scurred 6/19/2022
KCF BENNETT INFLUENCE Z80 (Z80) P43282587
Sire SCHU-LAR CONVERSION 501 ET (501) P43624399
SCHU-LAR 10X OF 22U N093 (10X) P43084010
OR N151 HUSKER S361 (361) 43472959
Dam OR S361 MISS HUSKER F514 (514) 43745927
OR MISS BONANZA 309B (309) P43472986
5/16/2023 WT 937

C272OR 501 COMPETITOR C272
44514248 Scurred

KCF BENNETT INFLUENCE Z80 (Z80) P43282587
Sire SCHU-LAR CONVERSION 501 ET (501) P43624399
SCHU-LAR 10X OF 22U N093 (10X) P43084010
OR N151 HUSKER S361 (361) 43472959
Dam OR S361 MISS HUSKER F622 (622) 43860100
OR Y90 SANDY 421S (421) P43635820
5/16/2023 WT 990

CED	BW	WW	YW	DMI	SC	SCF	MK	M\&G	CEM	MCW	UDD	TEAT	CW	FT	REA	MARB
1.5	1.6	57	77	0.0	0.6	21.8	15	43	0.3	53	1.60	1.70	61	0.02	0.63	0.50

Genetic Defect

Mandibulofacial Dysostosis (MD) - The anatomic features overlap with a variety of other facial defects and can include cleft palate, short jaw and a crooked jaw or face. This is a relatively new defect in Hereford cattle. This is a recessive trait. Both parents must be carriers for the trait in order to have affected calves. The bulls with the (MDC) notation are carriers for the trait. (MDP) is the notation for an animal that potentially could be a carrier. All potential carrier bulls have been tested and the results will be available by sale day.

Delayed Blindness (DB) - Animals have no apparent deficiency of vision as a calf. However, at approximately 9-12 months of age, the affected animals have vision loss. The eyes of affected animals appear normal. This is an autosomal recessive defect. Thus, an affected calf must have two carrier parents. Carriers of the mutation are healthy and unaffected. (DBP) is the notation for an animal that potentially could be a carrier. All potential carrier bulls have been tested and the results should be available by sale day.

WHOA.MORE POUNDS. MORE CALVES. MORE PROFIT.

Hereford.org | 816-842-3757

Herefords are known as the efficiency experts for a reason. Herefords boost pregnancy rates by 7\% and add \$30 per head in feedyard profitability in a crossbreeding system.

And Hereford genetics bring unrivaled hybrid vigor, longevity and disposition.

ヘ
$\ddot{\ominus}$
 308-641-1273 (Douglas cell)

January 27, 2024 12:00 noon

